导数、微分做题思路 (basic part)

2024/11/25 posted in  数学
  • 特定函数法、排除法
  • 连续函数且有形如\(\lim\limits_{ x \to a} \frac{f(x)-b}{x-a} =c\) 的式子,\(f(a)=b, f'(a)=c\)
  • (\(x=x_0\)处)函数连续->函数可导->导数连续
    • 函数是否连续:看\(\lim\limits_{x \to x_0^+} f(x)\)是否等于\(\lim\limits_{x \to x_0^-} f(x)\)
      • 或用定义:\(f(x_0)\) 和\(\lim\limits_{{x \to x_0}} f(x)\)均存在且相等
    • 函数是否可导
      • 定义(一般方法):看\(x=x_0\)时\(\lim\limits_{x \to x_0+} \frac{f(x)-f(x_0)}{x-x_0}\) 是否等于\(\lim\limits_{x \to x_0-} \frac{f(x)-f(x_0)}{x-x_0}\)
    • 导数是否连续:看\(\lim\limits_{x \to x_0^+} f'(x)\)是否等于\(\lim\limits_{x \to x_0^-} f'(x)\)
  • if \(f(x)=x(a, b)\),且\(f'(x_0)\)存在,利用\(x=x_0\)的可导和连续(见上两条)求a, b
  • if \(f(x)\)为周期为T的可导函数,求\(f'(x_0)\)时先利用所给定义式求\(f(x_0)\)
    • 常通过凑出这样的\(f'(x_0)=\lim\limits_{x \to x_0} \frac{f(x_0+h)-f(x_0)}{h}\)导数定义形式求\(f'(x_0)\)
  • 隐函数求导注意不要忘记多个变量相乘和链式法则
    • 对x求导时,\((y)'=y'\),e.g: \((y^2)'=2yy' , (e^y)'=y'e^y\)
  • 微分定义:\(\Delta y= f(x_0 + \Delta x) - f(x_0) = A \Delta x + o(\Delta x)\)
  • \(f\)奇函数,\(f'\)偶函数,\(f''\)奇函数
  • 曲线曲率公式\(\kappa = \frac{|y{\prime}{\prime}|}{(1 + (y{\prime})^2)^\frac{3}{2}}\)
  • 个人的参数方程求导方式:
    • \(y'=\frac{dy}{dx} = \frac{dy(t)}{dx(t)} = \frac{y'(t)dt}{x'(t)dt}\)
    • \(y''=\frac{d^2y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx}\)
  • \(({\frac{1}{ax+b}})^{(n)}=\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}\)